Es mostren els missatges amb l'etiqueta de comentaris Objectes. Mostrar tots els missatges
Es mostren els missatges amb l'etiqueta de comentaris Objectes. Mostrar tots els missatges

Pilotes de futbol, satèl·lits i Buckminster Fuller.

Normalment, les pilotes agraden a tothom. També als dofins, gossos, gats... així que suposo que deu ser alguna predilecció dels mamífers per la forma esfèrica. De fet, milions d'éssers humans estaran pendents durant els propers dies dels esforços i suors d'una colla de milionaris en roba esportiva donant cops de peu a una pilota.

Estrictament, una pilota de futbol no és una esfera. Però s'hi assembla bastant. El disseny de les pilotes ha anat evolucionant segons les tècniques de fabricació de cada moment i incorporant modificacions en els materials utilitzats i el patronatge per a millorar-ne les prestacions (pes, velocitat, control...).

Aquests dies, al Mundial de Brasil, es juga amb una pilota anomenada Brazuca que té aquesta pinta:


Està formada per sis panells de poliuretà encolats, eliminant la necessitat de costures. I sí, és força colorida, però probablement d'aquí un temps poca gent la recordarà. Des de fa més de quaranta anys, quan parlem d'una pilota de futbol, la imatge que tenim al cap és més semblant a aquesta:



La pilota Telstar va ser introduïda al Mundial de Mexico 1970 i va suposar una revolució. Està formada per 20 hexàgons blancs i 12 pentàgons negres que es va convertir en l'estàndard per al futbol durant dècades. Els colors podien variar, però la configuració de pentàgons i hexàgons es va mantenir fins a 2006. 

En aquella època, als matemàtics i geòmetres els agradava més el futbol. Els jugadors perseguien un icosaedre truncat, que és un dels sòlids arquimedians o poliedres semiregulars. Té 32 cares, 12 de les quals són pentagonals i 20 hexagonals, 90 arestes i a cadascun dels seus 60 vèrtexs i concorren dues cares hexagonals i una pentagonal.

Un icosaedre és un poliedre regular format per 20 triangles equilàters. Truncar-lo significa retallar-ne els 12 vèrtexs a la mateixa distància. És precisament a cadascun d'aquests vèrtexs on apareixeran els 12 pentàgons, i els 20 triangles escapçats es convertiran en els 20 hexàgons de l'icosaedre truncat.

A cada vèrtex d'un icosaedre s'hi troben 5 triangles equilàters.
En escapçar cada vèrtex de l'icosaedre apareixen pentàgons i hexàgons.
La figura resultant de suprimir els vèrtexs negres és un icosaedre truncat.
Si en comptes d'utilitzar Zometool, construïm els poliedres amb ITSPHUN, el procés és igual d'interessant i el resultat és molt més viu. Un Mundial de futbol amb una pilota així sí que seria memorable!



Per cert, el nom de la pilota Telstar és un reconeixement al primer satèl·lit comercial de comunicacions que va entrar en funcionament el 1962 i que també té una forma gairebé esfèrica.

Probablement un homenatge més encertat hauria estat dedicar-la a Arquímedes o a Buckminster Fuller però es corria el risc de que algun futbolista necessités obrir un llibre. El 1983, amb el descobriment de la tercera forma més estable del carboni (després del diamant i el grafit) ja es va trobar una estructura menys frívola a la que van batejar com a Buckminsterful·lerè.

L'esfera de Hoberman

El 1986, Chuck Hoberman va registrar la patent per a una estructura reversiblement expandible, la primera d'una sèrie que avui supera la vintena i que comparteix la idea de crear objectes que es comportin de manera similar a un organisme viu.

Les investigacions sobre estructures transportables, amb aplicacions en construccions temporals, han donat pas al disseny de façanes adaptatives que responen a les necessitats canviants de ventilació i protecció solar. Els tancaments retràctils permeten també la polivalència dels espais o la instal·lació de cúpules practicables.


Però sens dubte la seva invenció més popular ha estat l'Esfera Hoberman. El 1992 va instal·lar-se al Liberty Science Center de New Jersey l'esfera original, amb un diàmetre màxim de 5,5m.



I, en una escala més petita (passa de 23 a 76 cm) ha servit per a la producció d'una línia de joguines que ha esdevingut un clàssic del disseny, present a la colecció del MoMA, a les millors botigues... i al beeslab.





A través de quadrats i triangles (GQ003)

Quan la geometria es posa en moviment, es poden redefinir objectes quotidians que pensàvem immutables. Les portes de Klemens Torggler són un invent basat en quadrats o triangles que giren sobre si mateixos i permeten prescindir de les guíes habituals en les portes correderes.